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Motivation

• Most of Web document classification algorithms
– Treat web documents the same way as text 

documents
• HTML tags are completely ignored

• The popular Vector-Space model
– Ignores the word position in the document
– Ignores the order of words in the document 

• Solution – structure-sensitive document 
representation 
– Graph representation in this research



8/27/2006 WebKDD 2006 Workshop on Knowledge Discovery on the Web, Aug. 20,
2006, at KDD 2006, Philadelphia, PA, USA

4

Text Categorization (TC)
Relevant Definitions

• TC – task of assigning a Boolean {T, F} value 
to each pair CDcd ij ×∈,
D = (d1, …, d|D|) is domain of documents 
and C = (c1, …, c|C|) is set of pre-defined 
categories (classes)

• Single Label TC – only one category can be 
assigned to each document

• Multi Label TC – overlapping categories allowed

• Ranking categorization
– Degree of relevance of every document to each category is calculated

,  where
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Graph Based Document Representation 
Example –Source: www.cnn.com, 24/05/2005
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Graph Based Document 
Representation - Parsing

title

link

text
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Graph Based Document 
Representation - Preprocessing

TITLE 
CNN.com International

Text
A car bomb has exploded outside a popular Baghdad 
restaurant, killing three Iraqis and wounding more than 110 
others, police officials said. Earlier an aide to the office of 
Iraqi Prime Minister Ibrahim al-Jaafari and his driver were 
killed in a drive-by shooting.

Links
Iraq bomb: Four dead, 110 wounded.
FULL STORY.

Stop word removal Stemming
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Graph Based Document 
Representation – Graph Construction
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Web Document Classification with 
Graph-Based Models

• Advantages (Schenker et al., 2004)
– Keep HTML structure information
– Retain original order of words

• Limitation
– Can work only with “lazy” classifiers, which have a very low 

classification speed
• Example: k-Nearest Neighbors classifier

• Conclusion
– Graph models cannot be used directly for model-based

classification of web documents
• Solution

– The hybrid approach: represent a document as a vector of 
sub-graphs
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Graph Based Document Representation 
– Subgraphs Extraction

• Naïve Method
– Input:

• G - Training set of directed, unique nodes graphs
• tmin – Threshold (minimum sub-graph frequency)

– Output:
• Set of classification-relevant sub-graphs

– Process:
• For each class find frequent sub-graphs SCF>tmin

• Combine all sub-graphs into one set

• Classification-Relevant Sub-Graphs are 
frequent in a specific category

Subgraph Class 
Frequency
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Graph Based Document Representation 
– Subgraphs Extraction

• Smart Method
– Input

• G – training set of directed, unique nodes graphs

• CRmin - Minimum Classification Rate

– Output
• Set of classification-relevant sub-graphs

– Process:

• For each class find sub-graphs CR>CRmin
• Combine all sub-graphs into one set

• Classification-Relevant Sub-Graphs are more 
frequent in a specific category than in other 
categories
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Graph Based Document Representation 
– Subgraphs Extraction

• Smart with Fixed Threshold Method
– Input

• G – training set of directed, unique nodes graphs

• tmin – Threshold (minimum sub-graph frequency)

• CRmin - Minimum Classification Rate

– Output
• Set of classification-relevant sub-graphs

– Process:

• For each class find sub-graphs SCF>tmin and CR>CRmin
• Combine all sub-graphs into one set

• Classification-Relevant Sub-Graphs are 
frequent in a specific category and not frequent in 
other categories
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Predictive Model Induction with 
Hybrid Representation

Sub-graph
Extraction

Text representation

Feature selectionCreation of 
prediction model

Document 
classification

rules

Web or text
documents 

Graph
Construction

Set of documents with known category – training setDocuments graph representationExtraction of sub-graphs relevant for classificationRepresentation of all documents as vectors with 
boolean values for every sub-graph in the set
Identification of best attributes (boolean features) 
for classification
Finally – prediction model construction and 
extraction of classification rules 
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Frequent Subgraphs Extraction: 
Notations

Notation Description

G Set of document graphs

t min Subgraph frequency threshold

K Number of edges in the graph

G Single graph

sg Single subgraph

sg k Subgraph with k edges

F k Set of frequent subgraphs with k edges

E k Set of extension subgraphs with k edges

C k Set of candidate subgraphs with k edges
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1: F0 Detect all frequent 1 node subgraphs (nodes) in G
2: k 1
3: While Fk-1 ≠ Ø Do
4: For Each subgraph sgk-1 ∈ Fk-1 Do
5: For Each graph g ∈ G Do
6: If sgk-1 is subgraph of g Then
7: Ek Detect all possible k edge extensions of sgk-1 in g
8: For Each subgraph sgk ∈ Ek Do
9: If sgk already a member of Ck Then
10: {sgk ∈ Ck}.Count++
11:      Else
12: sgk.Count 1
13: Ck sgk

14: Fk {sgk in Ck | sgk.Count > tmin * |G|}
15: k++
16: Return F1, F2, …Fk-2

Frequent Subgraphs Extraction: Algorithm
(based on the FSG algorithm by Kuramochi and Karypis, 2004)
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Frequent Subgraphs Extraction: 
Complexity

Subgraph isomorphism
Isomorphism between graph G1=(V1,E1,α1,β1) and part 
of graph G2=(V2,E2,α2,β2) can be found by two simple 
actions:

1. Determine that V1⊆V2 - O(|V1|*|V2|)

2. Determine that E1⊆E2 – O(|V1|2) 

Total complexity:
O(|V1|*|V2| + |V1|2) ≤ O(|V2|2)

Graph isomorphism
Isomorphism between graphs G1=(V1,E1,α1,β1) and 
G2=(V2,E2,α2,β2) can be found by two simple actions:

1. Determine G1⊆G2 - O(|V2|)
2. Determine G2⊆G1 - O(|V2|)
Total complexity: O(|V2|)
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Frequent Subgraph Extraction
Example
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Comparative Evaluation

• Benchmark Data Sets
– K-series

• 2,340 documents and 20 categories
• Documents in those collections were originally news pages hosted at 

Yahoo 
– U-series

• 4167 documents taken from the computer science department of four 
different universities: Cornell, Texas, Washington, and Wisconsin 

• 7 major categories: course, faculty, students, project, staff, department 
and other 

• Dictionary construction
– N most frequent words in each document were taken for vector 

/ graph construction, that is, exactly the same words in each 
document were used for both the graph-based and the bag-of-
words representations 
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Classification Results with 
C4.5– K series data set

 
Accuracy Comparison for C4.5, K-series
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Classification Results with 
C4.5– U series data set

 
Accuracy Comparison for C4.5, U-series
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Classification Results with 
Naïve Bayes – K series data set

Accuracy Comparison for NBC, K-series
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Classification Results with 
Naïve Bayes – U series data set

Accuracy Comparison for NBC, U-series
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Percentage of Multi-node Subgraphs

Relative Number of Multi Node Graphs for C4.5, K-series
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Summary

• Different document representations were 

empirically compared in terms of 

classification accuracy and execution time

• The proposed hybrid methods were found 

to be more accurate in most cases and 

generally much faster than their vector-

space and graph-based counterparts
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Future research

• Finding optimal parameters for sub-graph 
extraction:
– Graph size N
– tmin for Naïve extraction
– CRmin for Smart extraction

• Applying the hybrid methodology to 
additional classifiers

• Applying the hybrid methodology to 
unsupervised learning (clustering)
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