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Eh ) Motivation

Mcst of Web document classification algorithms

— Treat web documents the same way as text
documents
« HTML tags are completely ignored

* The popular Vector-Space model
— Ignores the word position in the document
— Ignores the order of words in the document
« Solution — structure-sensitive document
representation
— Graph representation in this research
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| ) Text Categorization (TC)

| } Relevant Definitions

e TC — task of assigning a Boolean {T, F} value

to each pair (d,ci) e DxC , where
D = (dy, ..., djp)) is domain of documents
and C = (cq, ..., C|¢) Is set of pre-defined

categories (classes)

e Single Label TC — only one category can be
assigned to each document

e Multi Label TC — overlapping categories allowed

e Ranking categorization
— Degree of relevance of every document to each category is calculated
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Graph Based Document Representation
Example —Source: www.cnn.com, 24/05/2005

irag bomb: Four dead. 110
wounded

Aocar omb has exploded outside a popular
Baghdad restaurant, Killing three Iraqgis and
wwounding more thamn 110 others, poalice officials
said. Earlier anm aide to the aoffice of lraqgi Frimes
Minister lbrahim al-Jdaafari and his driver were
Killed in a drive-by shootinmg.

FULL STORY
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Graph Based Document
Representation - Parsin

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitiona
| <!-- saved from url=({0023)http://edition.cnn.com/ —->
<HTML lang=en><HEADSTTITLE>CNN.com International</TITLE=>

<META http-equiv=content-type content="text/html; charset=iso-BEZ9-1">
<META http-equiv=refresh content=1800><LINK href="/" rel=Start><LINK

<DIV class=cnnSectionTl
style="PADDING-RIGHT: épx; PADDING-LEFT: épx; PADDING-BOTTOM:
<H23<A style="COLCR; #000"
pref—"http://edition.cnn.com/2005/WORLD/meast/05/23/iraq.main/ index. html " >Tram
bomb: Four dead, 110 wounded</As</H2>

R R R T T R A e IR L L SR P e - il ing’

PADDING-TCE: 3px">

ree Iragiz and wounding more than 110 others, police officials =aid.
Earlier an aide to the office of Iraqi Prime Minister Ibrahim al-Jaafari
am~sis _driver were killed in a drive-by shooting.</P>
<P><A class=cnntllink
href="http://edition.cnn.com/2005/WORLD/meast/05/23/i
STORY</A></P>
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Graph Based Document
Representation - Preprocessin

CNN International
Stop word removal Stemming j
Text

car bomb explod Baghdad
restaurant, kill wound
pollce official aide office
Iraa Prlme Minister Ibrahlm al-Jaafari drive
Kill drive shooting.

Links

Irag bomb: dead, wound
FULL STORY.
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)

Representation — Graph Constructior

Graph Based Document

ord Frequency
Iraq 3
Kill 2
Bomb 2
Wound 2
Drive 2
Explod 1
Baghdad 1
: EXPLOD BAGHDAD
International 1
/ -
CNN 1 Title
Car 1 - TI
INTERNATIONAL CNN
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) Web Document Classification with
‘o = Graph-Based Models

“* Advantages (Schenker et al., 2004)
— Keep HTML structure information
— Retain original order of words
 Limitation

— Can work only with “lazy” classifiers, which have a very low
classification speed

« Example: k-Nearest Neighbors classifier
« Conclusion

— Graph models cannot be used directly for model-based
classification of web documents

e Solution
— The hybrid approach: represent a document as a vector of
sub-graphs
8/27/2006 WebKDD 2006 Workshop on Knowledge Discovery on the Web, Aug. 20, 9
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| ) Graph Based Document Representation

1) — Subgraphs Extraction

aive Method
— Input:
e G - Training set of directed, unique nodes graphs
et .,— Threshold (minimum sub-graph frequency)

— Output:
- i Subgraph Class
e Set of classification-relevant sub-graphs R;quency j

— Process:
e For each class find frequent sub-graphs SCF>t
e Combine all sub-graphs into one set

e Classification-Relevant Sub-Graphs are
frequent in a specific category

min

8/27/2006 WebKDD 2006 Workshop on Knowledge Discovery on the Web, Aug. 20, 10
2006, at KDD 2006, Philadelphia, PA, USA




. 1) Graph Based Document Representation
o — Subgraphs Extraction

« Smart Method
— Input

e G — training set of directed, unigue nodes graphs

e CR,in - Minimum Classification Rate _

— Output

e Set of classification-relevant sub-graphs

— Process:
e For each class find sub-graphs CR>CR
e Combine all sub-graphs into one set

e Classification-Relevant Sub-Graphs are more
frequent in a specific category than in other
categories

min
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| 1) Graph Based Document Representation
= — Subgraphs Extraction

)/

e Smart with Fixed Threshold Method
— Input

e G — training set of directed, unigue nodes graphs

e t_..— Threshold (minimum sub-graph frequency)

e CR,,i, - Minimum Classification Rate _

— Output

e Set of classification-relevant sub-graphs

— Process:
e For each class find sub-graphs SCF>t
e Combine all sub-graphs into one set

e Classification-Relevant Sub-Graphs are
frequent In a specific category and not frequent In
other categories
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Predictive Model Induction with
Hybrid Representation

A \mumu (0)firs
n B SEIN
—
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Frequent Subgraphs Extraction:
Notations

Notation Description

-

Set of candidate subgraphs with k edges

WebKDD 2006 Workshop on Knowledge Discovery on the Web, Aug. 20,
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| 1) Frequent Subgraphs Extraction: Algorithm
') (based on the FSG algorithm by Kuramochi and Karypis, 2004)

Ty

r FO & Detect all frequent 1 node subgraphs (nodes) in G

2: k<1

3: While F-1 £ @ Do

4: For Each subgraph sgk-1 € Fk-1 Do

) For Each graph g € G Do

6: If sgk-1 is subgraph of g Then

="l Ek & Detect all possible k edge extensions of sgk-1in g
8

9

1

For Each subgraph sgk € Ek Do
If sgkalready a member of Ck Then

O: {sgk € CkLCount++
11: Else
12: sgk.Count € 1
13: Ck & sgk
14: Fk & {sgkin Ck| sgk.Count >t .. * |G|}
15: k++
16: Return F1, F2, .. Fk2
8/27/2006 WebKDD 2006 Workshop on Knowledge Discovery on the Web, Aug. 20, 15
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| ) Frequent Subgraphs Extraction:
) Complexity

%ﬁ)graph Isomorphism
Isomorphism between graph G,=(V,,E;,a,,8,) and part
of graph G,=(V,,E,,a,,8,) can be found by two simple
actions:
1. Determine that V,cV, - O(|V{|*|V.])
2. Determine that E,cE, — O(|V4|?
Total complexity:
O(IViI*IVol + [V4]?) = O(IV2I?)
Graph isomorphism

Isomorphism between graphs G,=(V,,E;,a;,6;) and
G,=(V,,E,,a,,B,) can be found by two simple actions:

1. Determine G,cG, - O(]VZ?])
2. Determine G,cG, - O(]V?])
Total complexity: O(]V?])
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| Frequent Subgraph Extraction
/. Example

Subgraphs Document Graph Extensions
) aan :

< T=lFI
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) Comparative Evaluation

Rl | |

Benchmark Data Sets
— K-series
« 2,340 documents and 20 categories
 Documents in those collections were originally news pages hosted at
Yahoo
— U-series
* 4167 documents taken from the computer science department of four
different universities: Cornell, Texas, Washington, and Wisconsin

« 7 major categories: course, faculty, students, project, staff, department
and other

* Dictionary construction

— N most frequent words in each document were taken for vector
/ graph construction, that is, exactly the same words in each
document were used for both the graph-based and the bag-of-
words representations

8/27/2006 WebKDD 2006 Workshop on Knowledge Discovery on the Web, Aug. 20, 18
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Classification Results with

_C4.5— Kseries dataset

Accuracy Conparison for C4.5, K-series

80% -
5
C
-
3)
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9
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20 30 40 50 60 70 80 0 100
Frequent Terms Used
— — — Bag-of-words —&8— Hybrid Naive
—&— Hybrid Smart —a— Hybrid Smart with Fixed Threshold
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Classification Results with

_C4.5— U series dataset

Classification Speed:
0.3 sec. per 1,000

Accuracy Conparison for C4.5, U-series

men
- documents
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2 documents
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Frequent Ternms Used
— —— — Bag-of-words —&8— Hybrid Naive
—4&— Hybrid Smart —aA— Hybrid Smart with Fixed Threshold
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Classification Accuracv

55%0-
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20 30 40 50 60 70 80 0 100
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Classification Speed:
1.2 sec. per 1,000
documents
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Multi Node Graphs

—B8— Hybrid Naive

Relative Number of Multi Node Graphs for C4.5, K-series
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| ) Summary

e Different document representations were
empirically compared in terms of
classification accuracy and execution time

e The proposed hybrid methods were found
to be more accurate In most cases and
generally much faster than their vector-
space and graph-based counterparts
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e Finding optimal parameters for sub-graph
extraction:

— Graph size N

—t..;, for Naive extraction

— CR,,;,, for Smart extraction

e Applying the hybrid methodology to
additional classifiers

e Applying the hybrid methodology to
unsupervised learning (clustering)
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